МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Тульский государственный университет» Институт высокоточных систем им. В.П. Грязева

Утверждено на заседании Ученого совета ИВТС им.В.П.Грязева Протокол №5а от 24.01.2024

Директор института/

А.Н. Чуков

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ (ОЦЕНОЧНЫЕ МАТЕРИАЛЫ) ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

«Основы аналоговой и цифровой электроники»

основной профессиональной образовательной программы высшего образования — программы бакалавриата

по направлению подготовки

12.03.03 Фотоника и оптоинформатика

с направленностью (профилем)

Интеллектуальные фотонные системы

Форма обучения: очная

Идентификационный номер образовательной программы: 120303-01-24

ЛИСТ СОГЛАСОВАНИЯ фонда оценочных средств (оценочных материалов)

Разработчик(и):

Смирнов Владимир Александрович, доц., к.т.н..доц (ФИО, должность, ученая степень, ученое звание)

(подпись)

1. Описание фонда оценочных средств (оценочных материалов)

Фонд оценочных средств (оценочные материалы) включает в себя контрольные задания и (или) вопросы, которые могут быть предложены обучающемуся в рамках текущего контроля успеваемости и промежуточной аттестации по дисциплине (модулю). Указанные контрольные задания и (или) вопросы позволяют оценить достижение обучающимся планируемых результатов обучения по дисциплине (модулю), установленных в соответствующей рабочей программе дисциплины (модуля), а также сформированность компетенций, установленных в соответствующей общей характеристике основной профессиональной образовательной программы.

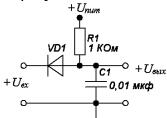
Полные наименования компетенций и индикаторов их достиженияпредставлены в общей характеристике основной профессиональной образовательной программы.

2. Оценочные средства (оценочные материалы) для проведения текущего контроля успеваемости обучающихся по дисциплине (модулю)

4 семестр

Перечень контрольных заданий и (или) вопросов для оценки сформированности компетенции ОПК-1(контролируемый индикатор достижения компетенции ОПК - 1.1)

- 1. Диодный ключ. Схема, принцип действия, статические характеристики.
- 2. Динамические характеристики диодного ключа.
- 3. Диодный ключ для аналоговых сигналов. Схема, принцип действия, основы расчета.
- 4. Ключ на биполярном транзисторе. Схема, принцип действия, основы расчета в статическом режиме.
- 5. Ключ на биполярном транзисторе. Процессы отпирания транзисторного ключа.
- 6. Ключ на биполярном транзисторе. Процессы запирания транзисторного ключа.
- 7. Ключи на полевых транзисторах для дискретных сигналов. Схемы, принцип действия, основы расчета.
- 8. Ключи на полевых транзисторах для аналоговых сигналов. Схемы, принцип действия, основы расчета.
- 9. Классификация и основные характеристики усилителей.
- 10. Усилитель «общий эмиттер». Схема, принцип действия, характеристики, основы расчета.
- 11. Усилитель «общий коллектор». Схема, принцип действия, характеристики, основы расчета.
- 12. Усилитель «общая база». Схема, принцип действия, характеристики, основы расчета.
- 13. Дифференциальный усилитель на биполярных транзисторах. Схема, принцип действия, характеристики, основы расчета.
- 14. Инвертирующая схема включения операционного усилителя. Схема, принцип действия, характеристики, основы расчета.
- 15. Неинвертирующая схема включения операционного усилителя. Схема, принцип действия, характеристики, основы расчета.

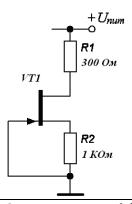

Перечень контрольных заданий и (или) вопросов для оценки сформированности компетенции ОПК-1(контролируемый индикатор достижения компетенции ОПК - 1.2)

1. Дифференциальная схема включения операционного усилителя. Схема, принцип действия, характеристики, основы расчета.

- 2. Инструментальный усилитель. Схема, принцип действия, характеристики, основы расчета.
- 3. Активные фильтры первого порядка. Виды фильтров, амплитудно-частотные и фазочастотные характеристики.
- 4. Активные фильтры первого порядка. Интегрирующее звено. Схема, передаточная функция, основные характеристики.
- 5. Активные фильтры первого порядка. Дифференцирующее звено. Схема, передаточная функция, основные характеристики.
- 6. Активные фильтры первого порядка. Интегро-дифференцирующее звено. Схема, передаточная функция, основные характеристики, основы расчета.
- 7. Активные фильтры первого порядка. Фазовращающее звено. Схема, передаточная функция, основные характеристики, основы расчета.
- 8. Генераторы гармонических колебаний. Структурная схема, принцип действия, условия возбуждения колебаний, основы расчета.
- 9. Генераторы гармонических колебаний. RC-генератор на основе моста Вина. Схема, условие возбуждения колебаний, принцип действия, основы расчета.
- 10. Генераторы гармонических колебаний. LC-генератор с трансформаторной обратной связью. Схема, условие возбуждения колебаний, принцип действия, основы расчета.
- 11. Генераторы гармонических колебаний. LC-генератор по схеме «индуктивная трехточка». Схема, условие возбуждения колебаний, принцип действия, основы расчета.
- 12. Генераторы гармонических колебаний. LC-генератор по схеме «емкостная трехточ-ка». Схема, условие возбуждения колебаний, принцип действия, основы расчета.

Перечень контрольных заданий и (или) вопросов для оценки сформированности компетенции ОПК-1(контролируемый индикатор достижения компетенции ОПК - 1.3)

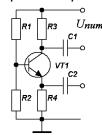
1. Определите длительность фронта импульса на выходе диодного ключа, показанного на рисунке, при ступенчатом изменении входного напряжения от значения $U_{\rm BX}=5\,B_{\rm до}$ значения $U_{\rm BX}=15\,B_{\rm , ecnu}$ $U_{num}=10\,B_{\rm . При}$ расчетах считать, что переходный процесс заканчивается, когда выходное напряжение достигнет 0,9 от установившегося значения. Прямым падением напряжения на диоде пренебречь. Остальные параметры схемы указаны на рисунке.



2. Оцените минимальное входное напряжение $U_{\rm BX}$, необходимое для перевода транзистора в схеме, показанной на рисунке, в режим насыщения, если $R_2=1\,KOM$, $R_1=220\,OM$, $U_{\rm IBIT}=15\,B$, $U_{690}=0.5\,B$, $h_{219}=60$. Падением напряжение между коллектором и эмиттером пренебречь.

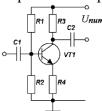
$$R1$$
 $+U_{\rm ex}$
 $VT1 + U_{\rm obs}x$

3. Оцените ток источника тока, показанного на рисунке, если начальный ток


стока $I_{\text{с.нач}} = 5$ мA, напряжение затвор-исток отсечки $U_{\text{з.и.отс}} = 5$ B, $U_{\text{пит}} = 30\,B$. При расчетах принять, что BAX транзистора описывается зависимостью: $I_{c} = I_{\text{с.нач}} (1 - \frac{U_{\text{з.и.}}}{U_{\text{с.нач}}})^{2}$.

4. Определить коэффициент усиления, ток покоя, входное и выходное сопротивления схемы усилителя, показанной на рисунке, если элементы схемы имеют следующие параметры: $R_1 = 10 \, \mathrm{KOm}$, $R_2 = 1 \, \mathrm{KOm}$,

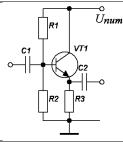
$$R_3 = 3.9 \,\mathrm{KOm}$$
, $R_4 = 330 \,\mathrm{Om}$, $h_{219} = 50$, $U_{690} = 0.7 \,B$


 $U_{\Pi \Pi \Pi} = 15 B_{,} \ \phi_{\Pi} = 26 M_{,} B_{,} \ \Pi$ ри расчете учесть влияние параметров транзистора на все характеристики.

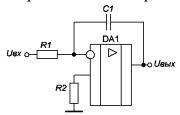
5. Определить коэффициент усиления, ток покоя, входное и выходное сопротивления схемы усилителя, показанной на рисунке, если элементы схемы имеют следующие параметры: $R_1 = 10\,\mathrm{KOm}$, $R_2 = 1\,\mathrm{KOm}$

имеют следующие параметры:
$$R_1 = 10 \text{ KOM}$$
, $R_2 = 1 \text{ KOM}$, $R_3 = 4.7 \text{ KOM}$, $R_4 = 470 \text{ OM}$, $h_{219} = 60$, $U_{690} = 0.8 B$

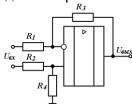
 $U_{\Pi \Pi \Pi} = 15 B_{,} ~~ \phi_{\Pi} = 26 \, \text{м} B_{.} ~~ \Pi$ ри расчете учесть влияние параметров транзистора на все характеристики.



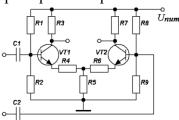
6. Определить коэффициент усиления, ток покоя, входное и выходное сопротивления схемы усилителя, показанной на рисунке, если элементы схемы


имеют следующие параметры:
$$R_1 = 10 \, \text{KOm}$$
, $R_2 = 12 \, \text{KOm}$

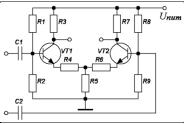
$$R_3 = 3.6 \text{ KOM}, h_{219} = 100, U_{690} = 0.9B, U_{\Pi \text{MT}} = 15B,$$


 $\phi_{\rm T} = 26 {\it MB}$. При расчете учесть влияние параметров транзистора на все характеристики.

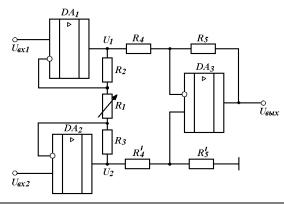
7. Определить входное сопротивление и значение емкости интегратора, если он должен обеспечивать прохождение синусоидального сигнала с амплитудой 3 В и минимальной частотой 100 Гц. Максимальное выходное напряжение ОУ не превышает 14B, $R1 = 10 \mathrm{KOm}$, $R2 = 12 \mathrm{KOm}$.



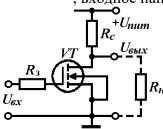
8. Рассчитать значения сопротивлений схемы усилителя на ОУ, если требуемое входное сопротивление 20 КОм, требуемый коэффициент усиления 4.


9. Определить коэффициент усиления синфазного сигнала при однополярном выходе (между коллектором и землей), ток покоя, входное и выходное сопротивления схемы усилителя, показанной на рисунке, если элементы схемы имеют следующие параметры: $R_1 = 10 \, \text{KOM}$, $R_2 = 10 \, \text{KOM}$, $R_3 = 3.6 \, \text{KOM}$, $R_4 = 360 \, \text{OM}$, $R_5 = 3.6 \, \text{KOM}$ $h_{219} = 100$,

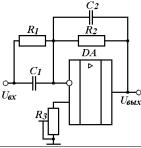
 $U_{690} = 0.9\,B$, $U_{\Pi \Pi \Pi} = 15\,B$, $\phi_{\rm T} = 26\,{\it MB}$. При расчете учесть влияние параметров транзистора на все характеристики.



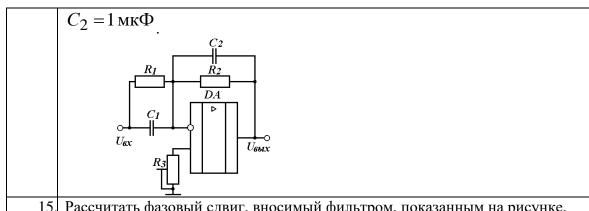
10. Определить коэффициент усиления дифференциального сигнала при однополярном выходе (между коллектором и землей), ток покоя, входное и выходное сопротивления схемы усилителя, показанной на рисунке, если


элементы схемы имеют следующие параметры: $R_1=10\,\mathrm{KOM}$, $R_2=15\,\mathrm{KOM}$, $R_3=2,8\,\mathrm{KOM}$, $R_4=360\,\mathrm{OM}$ $R_5=4,2\,\mathrm{KOM}$ $h_{219}=100$, $U_{690}=0,9\,B$, $U_{\Pi \Pi \Pi}=15\,B$, $\phi_{\mathrm{T}}=26\,\mathrm{MB}$. При расчете учесть влияние параметров транзистора на все характеристики.

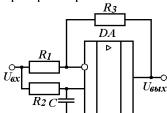
11. Определить коэффициент усиления инструментального усилителя, если $R_1=10\,\mathrm{KOm}$, $R_2=150\,\mathrm{KOm}$, $R_3=150\,\mathrm{KOm}$, $R_4=R_4'=36\,\mathrm{KOm}$, $R_5=R_5'=62\,\mathrm{KOm}$

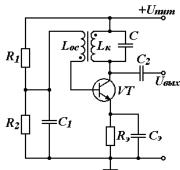


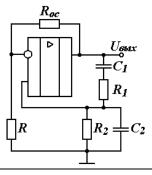
12. Оценить импульсный ток затвора ключа на полевом транзисторе, если сопротивление в цепи затвора $R_3 = 75~\mathrm{OM}$, входная емкость транзистора $C_\mathrm{BX} = 2000\,\mathrm{n\Phi}$, входное напряжение — $U_\mathrm{BX} = 15~\mathrm{B}$.



13. Рассчитать амплитуду выходного сигнала фильтра, показанного на рисунке, если на вход подается гармонический сигнал с частотой


$$f_{\it ex}$$
 = 1000 Гц и амплитудой $u_{\it ex}$ = 0,5 В . Параметры фильтра: R_1 = 10 КОм , R_2 = 15 КОм , R_3 = 20 КОм , C_1 = 100 н Φ , C_2 = 1 мк Φ


14. Рассчитать ток, потребляемый от источника входного сигнала фильтра, показанного на рисунке, если на вход подается гармонический сигнал с частотой $f_{\mathcal{E} x} = 5000 \, \Gamma$ ц и амплитудой $u_{\mathcal{E} x} = 0.5 \, \mathrm{B}$. Параметры фильтра: $R_1 = 20 \, \mathrm{KOm}$ $R_2 = 15 \, \mathrm{KOm}$ $R_3 = 20 \, \mathrm{KOm}$ $C_1 = 100 \, \mathrm{H}\Phi$


15. Рассчитать фазовый сдвиг, вносимый фильтром, показанным на рисунке, если на вход подается гармонический сигнал с частотой $f_{ex}=2000\Gamma$ ц . Параметры фильтра: $R_1=20\mathrm{KOm}$, $R_2=30\mathrm{KOm}$, $C=100\mathrm{\,H}\Phi$.

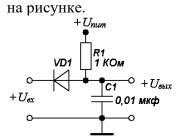
16. Рассчитать требуемые значения индуктивности L_{κ} и емкости C_{κ} , для получения частоты колебаний $f_{\mathcal{E}}=10000\Gamma$ ц, если $r_{\mathfrak{F}}=10\,O$ м, $h_{2\,1\mathfrak{F}}=80$. Требуемая добротность контура Q=100.

17. Рассчитать требуемые значения параметров элементов генератора, для получения частоты колебаний $f_c = 10000 \Gamma$ ц, если выходной ток операционного усилителя не должен превышать 1 мА, $R_{oc} = 10 \, \kappa O M$

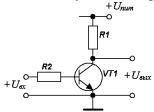
3. Оценочные средства (оценочные материалы) для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Перечень контрольных заданий и (или) вопросов для оценки сформированности компетенции ОПК-1 (контролируемый индикатор достижения компетенции ОПК - 1.1)

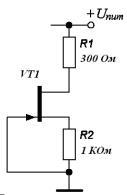
- 1. Диодный ключ. Схема, принцип действия, статические характеристики.
- 2. Динамические характеристики диодного ключа.
 - 3. Диодный ключ для аналоговых сигналов. Схема, принцип действия, основы расчета.
 - 4.Ключ на биполярном транзисторе. Схема, принцип действия, основы расчета в статическом режиме.
 - 5.Ключ на биполярном транзисторе. Процессы отпирания транзисторного ключа.
 - 6.Ключ на биполярном транзисторе. Процессы запирания транзисторного ключа.
 - 7. Ключи на полевых транзисторах для дискретных сигналов. Схемы, принцип действия, основы расчета.
 - 8.Ключи на полевых транзисторах для аналоговых сигналов. Схемы, принцип действия, основы расчета.
 - 9. Классификация и основные характеристики усилителей.
 - 10.Усилитель «общий эмиттер». Схема, принцип действия, характеристики, основы расчета.
 - 11.Усилитель «общий коллектор». Схема, принцип действия, характеристики, основы расчета.
 - 12.Усилитель «общая база». Схема, принцип действия, характеристики, основы расчета.
- 13. Дифференциальный усилитель на биполярных транзисторах. Схема, принцип действия, характеристики, основы расчета.
 - 14. эжИнвертирующая схема включения операционного усилителя. Схема, принцип действия, характеристики, основы расчета.
 - 15.Неинвертирующая схема включения операционного усилителя. Схема, принцип действия, характеристики, основы расчета.

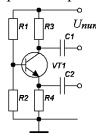

Перечень контрольных заданий и (или) вопросов для оценки сформированности компетенции ОПК-1 (контролируемый индикатор достижения компетенции ОПК - 1.2)

- 13. Дифференциальная схема включения операционного усилителя. Схема, принцип действия, характеристики, основы расчета.
- 14. Инструментальный усилитель. Схема, принцип действия, характеристики, основы расчета.
- 15. Активные фильтры первого порядка. Виды фильтров, амплитудно-частотные и фазочастотные характеристики.
- 16. Активные фильтры первого порядка. Интегрирующее звено. Схема, передаточная функция, основные характеристики.
- 17. Активные фильтры первого порядка. Дифференцирующее звено. Схема, передаточная функция, основные характеристики.
- 18. Активные фильтры первого порядка. Интегро-дифференцирующее звено. Схема, передаточная функция, основные характеристики, основы расчета.
- 19. Активные фильтры первого порядка. Фазовращающее звено. Схема, передаточная функция, основные характеристики, основы расчета.
- 20. Генераторы гармонических колебаний. Структурная схема, принцип действия, условия возбуждения колебаний, основы расчета.
- 21. Генераторы гармонических колебаний. RC-генератор на основе моста Вина. Схема, условие возбуждения колебаний, принцип действия, основы расчета.
- 22. Генераторы гармонических колебаний. LC-генератор с трансформаторной обратной связью. Схема, условие возбуждения колебаний, принцип действия, основы расчета.


- 23. Генераторы гармонических колебаний. LC-генератор по схеме «индуктивная трехточка». Схема, условие возбуждения колебаний, принцип действия, основы расчета.
- 24. Генераторы гармонических колебаний. LC-генератор по схеме «емкостная трехточка». Схема, условие возбуждения колебаний, принцип действия, основы расчета.

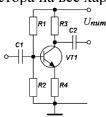
Перечень контрольных заданий и (или) вопросов для оценки сформированности компетенции ОПК-1 (контролируемый индикатор достижения компетенции ОПК - 1.3)


18. Определите длительность фронта импульса на выходе диодного ключа, показанного на рисунке, при ступенчатом изменении входного напряжения от значения $U_{\rm BX} = 5\,B_{\rm до}$ значения $U_{\rm BX} = 15\,B_{\rm , ecnu}$ $U_{num} = 10\,B_{\rm . При}$ расчетах считать, что переходный процесс заканчивается, когда выходное напряжение достигнет 0,9 от установившегося значения. Прямым падением напряжения на диоде пренебречь. Остальные параметры схемы указаны


19. Оцените минимальное входное напряжение $U_{\rm вx}$, необходимое для перевода транзистора в схеме, показанной на рисунке, в режим насыщения, если $R_2=1\,KOM$, $R_1=220\,OM$, $U_{\rm mat}=15\,B$, $U_{690}=0.5\,B$, $h_{219}=60$. Падением напряжение между коллектором и эмиттером пренебречь.

20. Оцените ток источника тока, показанного на рисунке, если начальный ток стока $I_{\rm c. haч}=5~{\it mA}$, напряжение затвор-исток отсечки $U_{\rm з. u. otc}=5~{\it B}$, $U_{\rm пит}=30~{\it B}~.$ При расчетах принять, что BAX транзистора описывается зависимостью: $I_{\it c}=I_{\rm c. haч}(1-\frac{U_{\rm з. u.}}{U_{\rm з. u. otc}})^2$.

21. Определить коэффициент усиления, ток покоя, входное и выходное сопротивления схемы усилителя, показанной на рисунке, если элементы схемы

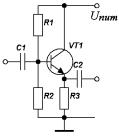

22. Определить коэффициент усиления, ток покоя, входное и выходное сопротивления схемы усилителя, показанной на рисунке, если элементы схемы

— 10 КОм — Р. — 1 КОм

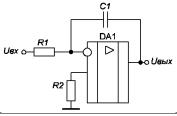
имеют следующие параметры: $R_1 = 10 \, \text{KOm}$, $R_2 = 1 \, \text{KOm}$

$$R_3 = 4.7 \text{ KOM}, R_4 = 470 \text{ OM}, h_{219} = 60, U_{690} = 0.8B,$$

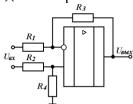
 $U_{\Pi \Pi \Pi} = 15 B_{,} ~~ \phi_{\Pi} = 26 \, \text{м} B_{.} ~~ \Pi$ ри расчете учесть влияние параметров транзистора на все характеристики.



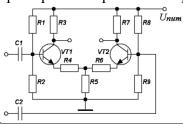
23. Определить коэффициент усиления, ток покоя, входное и выходное сопротивления схемы усилителя, показанной на рисунке, если элементы схемы


имеют следующие параметры: $R_1 = 10 \, \text{KOm}$, $R_2 = 12 \, \text{KOm}$

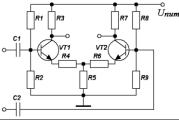
$$R_3 = 3.6 \,\mathrm{KO_{M}}, \; h_{219} = 100, \; U_{690} = 0.9 \,B, \; U_{\Pi \Pi \Pi} = 15 \,B,$$


 $\phi_{\rm T} = 26 {\it MB}$. При расчете учесть влияние параметров транзистора на все характеристики.

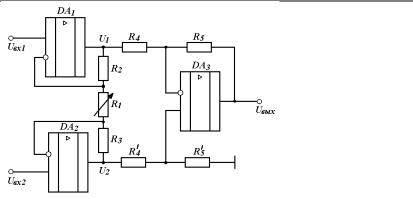
24. Определить входное сопротивление и значение емкости интегратора, если он должен обеспечивать прохождение синусоидального сигнала с амплитудой 3 В и минимальной частотой 100 Гц. Максимальное выходное напряжение ОУ не превышает 14B, $R1 = 10 \, \mathrm{KOM}$, $R2 = 12 \, \mathrm{KOM}$.


25. Рассчитать значения сопротивлений схемы усилителя на ОУ, если требуемое входное сопротивление 20 КОм, требуемый коэффициент усиления 4.

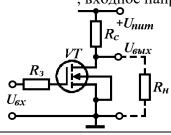
26. Определить коэффициент усиления синфазного сигнала при однополярном выходе (между коллектором и землей), ток покоя, входное и выходное сопротивления схемы усилителя, показанной на рисунке, если элементы


схемы имеют следующие параметры:
$$R_1 = 10 \, \mathrm{KOm}$$
, $R_2 = 10 \, \mathrm{KOm}$ $R_3 = 3.6 \, \mathrm{KOm}$ $R_4 = 360 \, \mathrm{Om}$ $R_5 = 3.6 \, \mathrm{KOm}$ $h_{\, 219} = 100$

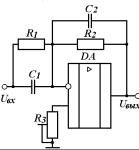
 $U_{690} = 0.9\,B$, $U_{\Pi \Pi \Pi} = 15\,B$, $\phi_{\rm T} = 26\,{\it mB}$. При расчете учесть влияние параметров транзистора на все характеристики.



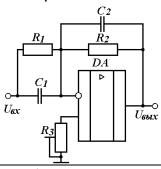
27. Определить коэффициент усиления дифференциального сигнала при однополярном выходе (между коллектором и землей), ток покоя, входное и выходное сопротивления схемы усилителя, показанной на рисунке, если


элементы схемы имеют следующие параметры: $R_1 = 10 \, \mathrm{KOM}$, $R_2 = 15 \, \mathrm{KOm}$, $R_3 = 2.8 \, \mathrm{KOm}$, $R_4 = 360 \, \mathrm{Om}$, $R_5 = 4.2 \, \mathrm{KOm}$, $h_{219} = 100$, $U_{690} = 0.9 \, B$, $U_{\Pi \Pi \Pi} = 15 \, B$, $\Phi_{\Pi} = 26 \, MB$. При расчете учесть влияние параметров транзистора на все характеристики.

28. Определить коэффициент усиления инструментального усилителя, если $R_1=10\,\mathrm{KOm}$, $R_2=150\,\mathrm{KOm}$, $R_3=150\,\mathrm{KOm}$, $R_4=R_4'=36\,\mathrm{KOm}$, $R_5=R_5'=62\,\mathrm{KOm}$

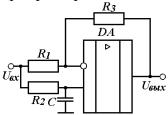


29. Оценить импульсный ток затвора ключа на полевом транзисторе, если сопротивление в цепи затвора $R_3 = 75~\mathrm{OM}$, входная емкость транзистора $C_\mathrm{BX} = 2000~\mathrm{n\Phi}$, входное напряжение — $U_\mathrm{BX} = 15~\mathrm{B}$

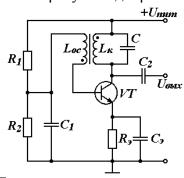


30. Рассчитать амплитуду выходного сигнала фильтра, показанного на рисунке, если на вход подается гармонический сигнал с частотой

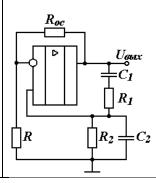
 $f_{ex}=1000$ Гц $_{\rm H}$ амплитудой $u_{ex}=0.5~{
m B}$. Параметры фильтра: $R_1=10~{
m KOm}$, $R_2=15~{
m KOm}$, $R_3=20~{
m KOm}$, $C_1=100~{
m H}\Phi$, $C_2=1~{
m MK}\Phi$



31. Рассчитать ток, потребляемый от источника входного сигнала фильтра, показанного на рисунке, если на вход подается гармонический сигнал с частотой $f_{ex} = 5000\,\Gamma$ ц и амплитудой $u_{ex} = 0.5\,\mathrm{B}$. Параметры фильтра: $R_1 = 20\,\mathrm{KOm}$, $R_2 = 15\,\mathrm{KOm}$, $R_3 = 20\,\mathrm{KOm}$, $C_1 = 100\,\mathrm{H\Phi}$, $C_2 = 1\,\mathrm{Mk\Phi}$



32. Рассчитать фазовый сдвиг, вносимый фильтром, показанным на рисунке,


если на вход подается гармонический сигнал с частотой $f_{ex}=2000\Gamma$ ц . Параметры фильтра: $R_1=20{
m KOm}$, $R_2=30{
m KOm}$, $C=100{
m h}\Phi$.

233. Рассчитать требуемые значения индуктивности L_{κ} и емкости C_{κ} , для получения частоты колебаний $f_{\mathcal{C}}=10000\Gamma$ ц, если $r_{\mathcal{G}}=1000$ м, $h_{21\mathcal{G}}=80$. Требуемая добротность контура Q=100.

34. Рассчитать требуемые значения параметров элементов генератора, для получения частоты колебаний $f_c = 10000 \Gamma$ ц, если выходной ток операционного усилителя не должен превышать 1 мА, $R_{oc} = 10 \, \kappa Om$

