МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Тульский государственный университет»

> Естественнонаучный институт Кафедра «Физики»

> > Утверждено на заседании кафедры «Физики» « 25 » января 2024 г., протокол № 6

Заведующий кафедрой

Bun

Р.Н.Ростовцев

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) «Физика»

основной профессиональной образовательной программы высшего образования — программы бакалавриата

по направлению подготовки: 12.03.03 Фотоника и оптоинформатика

с направленностью (профилем): Интеллектуальные фотонные системы

Формы обучения: очная

Идентификационный номер образовательной программы: 120303-01-24

Тула 2024 год

ЛИСТ СОГЛАСОВАНИЯ рабочей программы дисциплины (модуля)

Разработчик:

Колмаков Ю.Н., доцент, к.ф.-м.н., доцент

(подпись)

(ФИО, должность, ученая степень, ученое звание)

1 Цель и задачи освоения дисциплины (модуля)

Целью освоения дисциплины (модуля) является

- получение студентами основополагающих представлений о фундаментальном строении материи и физических принципах, лежащих в основе современной естественнонаучной картины мира;
- формирование у студентов современного естественнонаучного мировоззрения, развитие научного мышления и расширение их научно-технического кругозора.
- создание фундаментальной базы для дальнейшего изучения общетехнических и специальных дисциплин и для успешной последующей деятельности в качестве дипломированных специалистов.

Задачами освоения дисциплины (модуля) являются:

- изучение основных физических явлений и идей,
- овладение фундаментальными понятиями, законами и теориями классической и современной физики, а также методами физического исследования;
 - формирование научного мировоззрения и современного физического мышления;
- овладение приемами и методами решения конкретных задач из различных областей деятельности, основанных на применении и использовании различных явлений и законов физики;
 - ознакомление с современной научной аппаратурой;
 - формирование навыков проведения прикладного физического эксперимента;
- формирование умения выделить конкретное физическое содержание в прикладных задачах учебной и профессиональной деятельности.

2 Место дисциплины (модуля) в структуре основной профессиональной образовательной программы

Дисциплина (модуль) относится к обязательной части основной профессиональной образовательной программы.

Дисциплина (модуль) изучается в 2, 3 и 4 семестрах.

3 Перечень планируемых результатов обучения по дисциплине (модулю)

Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения основной профессиональной образовательной программы (формируемыми компетенциями) и индикаторами их достижения, установленными в общей характеристике основной профессиональной образовательной программы, приведён ниже.

В результате освоения дисциплины (модуля) обучающийся должен:

Знать:

1) основы применения естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования в инженерной деятельности, связанной с проектированием и конструированием, технологиями производства оптотехники, оптических и оптико-электронных приборов и комплексов (код компетенции – ОПК-1, код индикатора – ОПК-1.1);

Уметь:

1) применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в инженерной деятельности, связанной с проектированием и конструированием, технологиями производства оптотехники, оптических и оптико-

электронных приборов и комплексов (код компетенции — ОПК-1, код индикатора — ОПК-1.2);

Владеть:

1) навыками применения естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования в инженерной деятельности, связанной с проектированием и конструированием, технологиями производства оптотехники, оптических и оптико-электронных приборов и комплексов (код компетенции – ОПК-1, код индикатора – ОПК-1.3);

Полные наименования компетенций и индикаторов их достижения представлены в общей характеристике основной профессиональной образовательной программы.

4 Объем и содержание дисциплины (модуля)

4.1 Объем дисциплины (модуля), объем контактной и самостоятельной работы обучающегося при освоении дисциплины (модуля), формы промежуточной аттестации по дисциплине (модулю)

	чной	ax	1 В часах	Объем контактной работы в академических часах						ьной
Номер семестра	Формы промежуточной аттестации	Общий объем в зачетных единицах	Общий объем в академических ча	Лекционные занятия	Практические (семинарские) занятия	Лабораторные работы	Клинические практические занятия	Консультации	Промежуточная аттестация	Объем самостоятельной работы в академических часах
				Очна	я форма о	бучения				
2	Э	4	144	32	16	16	-	2	0,25	77,75
3	Э	4	144	32	16	16	-	2	0,25	77,75
4	Э	3	108	32	-	16	-	2	0,25	57,75
Итого		11	396	96	32	48	-	6	0,75	213,25

Условные сокращения: 3 -экзамен, 3Ч-зачет, ДЗ-дифференцированный зачет (зачет с оценкой), КП-защита курсового проекта, КР-защита курсовой работы.

4.2 Содержание лекционных занятий

Очная форма обучения

№ п/п	Темы лекционных занятий				
	2 семестр				

№ п/п	Темы лекционных занятий
1	Роль физики в развитии техники. Общая структура и задачи курса физики. Системы отсчета. Скалярные и векторные физические величины. Разложение произвольного движения физического тела на поступательное и вращательное движение. Кинематика поступательного движения в трехмерном пространстве. Перемещение, скорость, ускорение. Использование производных и интегралов в кинематике
	вольного движения. Кинематика криволинейного поступательного движения. Нормальное и тангенциальное ускорение. Кинематика вращательного движения вокруг закрепленной оси. Угловая скорость и угловое ускорение. Связь линейных и угловых кинематических переменных.
2	Динамика поступательного и вращательного движения. Импульс материальной точки (частицы). Разновидности сил в классической механике. Инерциальные системы отсчета. Законы Ньютона в инерциальных системах и их следствия. Неинерциальные системы отсчета и уравнения динамики поступательного движения в неинерциальных системах отсчета. Работа силы при поступательном движении. Мощность. Кинетическая энергия материальной частицы. Консервативные и неконсервативные силы. Диссипативные силы. Потенциальная энергия частицы. Потенциальная энергия в поле сил тяжести и потенциальная энергия упругого взаимодействия. Эквипотенциальные поверхности. Условия сохранения и изменения механической энергии материальной частицы. Полный импульс системы материальных точек (физического тела). Условия его сохранения и изменения. Центр масс системы материальных точек (физического тела). Уравнение движения центра масс. Реактивное движение. Сила тяги и уравнение Мещерского. Механическая энергия системы частиц. Момент силы и момент импульса материальной точки. Момент импульса системы материальных точек (физического тела). Момент инерции материальной точки и физического тела. Примеры вывода момента инерции симметричных тел. Теорема Штейнера. Тензор момента инерции и главные оси инерции. Основное уравнение динамики вращательного движения вокруг закрепленной оси. Закон сохранения и изменения момента импульса физической системы. Кинетическая энергия вращательного движения вокруг закрепленной оси. Полная механическая энергия вращательного движения и изменения. Плоское движение и законы сохранения. Гироскопы её сохранения и изменения.
3	щессия оси гироскопа. Механические колебания и волны. Кинематические характеристики колебательного процесса (амплитуда, фаза, частота). Условие возникновения гармонических колебаний. Одномерный гармонический осциллятор (пружинный маятник). Связь характеристик колебания с начальными условиями. Физический и математический маятник. Связь энергии гармонического осциллятора и амплитуды его колебаний. Свободные затухающие колебания. Зависимость амплитуды и периода затухающих колебаний от коэффициента затухания. Критическое затухание. Логарифмический декремент. Сложение взаимно-перпендикулярных и однонаправленных колебаний. Метод векторной диаграммы. Вынужденные колебания. Зависимость амплитуды и начальной фазы вынужденных колебаний от частоты. Резонанс и резонансные частоты. Характеристики волнового процесса. Длина волны, волновой вектор и фазовая скорость волны. Плоские и сферические волны. Волновое уравнение. Упругие волны в сплошных средах.
4	Основы релятивистской механики. Преобразования Галилея и принцип относительности Галилея. Экспериментальные факты, противоречащие классической механике. Принцип относительности Эйнштейна. Постулаты Эйнштейна. Преобразования Лоренца и их следствия. Релятивистское замедление времени и релятивистское сокращение длины. Релятивистский импульс и полная энергия релятивистской частицы. Связь релятивистского импульса и полной энергии. Энергия покоя. Дефект масс.

No	
п/п	Темы лекционных занятий
5	Основы термодинамики. Термодинамический и молекулярно-кинетический способы описания. Термодинамические параметры. Термодинамические процессы: равновесный и неравновесный, обратимый и необратимый. Основное (нулевое) начало термодинамики. Идеальный газ и уравнение состояния идеального газа. Уравнения изопроцессов в идеальном газе. Внутренняя энергия термодинамической системы (идеального газа) и работа по изменению её объема. Теплоемкость термодинамической системы (идеального газа) при различных изопроцессах. Первое начало термодинамики. Уравнение первого начала термодинамики для идеального газа. Адиабатный и политропный процессы. Уравнение Пуассона. Термодинамическое определение энтропии. Изменение энтропии при различных изопроцессах. Частные формулировки второго начала термодинамики. Невозможность существования вечных двигателей 1-го и 2-го рода. Изменение энтропии при необратимых процессах. Общая формулировка второго начала термодинамики. Циклические процессы. Цикл Карно. К.п.д. циклических процессов (тепловых машин). Холодильник, кондиционер, тепловой насос. Макро- и микросостояние системы. Термодинамическая вероятность. Статистическое определение энтропии (формула Больцмана). Третье начало термодинамики.
6	Основы молекулярно-кинетической теории. Функция распределения и её смысл. Функция распределения Гаусса для случайных величин. Распределение Максвелла молекул по проекциям и по величинам скоростей. Экспериментальная проверка распределения Максвелла. Средние скорости молекул газа. Частота соударений молекул газа о стенку сосуда. Внутренняя энергия и теплоемкость в молекулярно-кинетической теории. Идеальный газ в поле внешних сил. Барометрическая формула. Распределение Больцмана.
7	Кинетические явления (процессы переноса). Столкновения молекул газа между собой. Эффективное сечение взаимодействия молекул и средняя длина свободного пробега молекулы. Рассеяние пучка молекул в газе. Явления переноса в идеальном газе. Поток переносимой величины. Теплопроводность. Коэффициент теплопроводности. Диффузия. Коэффициент диффузии. Вязкость газа. Динамический коэффициент вязкости. Сила вязкого трения в газообразной и жидкой среде. Ламинарное и турбулентное течение газообразной или жидкой среды. Межмолекулярное взаимодействие. Уравнение состояния реального газа. Поверхностное натяжение и капиллярные явления. Фазовые переходы первого и второго рода.
	3 семестр
8	Электростатическое поле в вакууме. Поле покоящегося точечного заряда. Напряженность и потенциал поля. Принцип суперпозиции. Поле системы покоящихся зарядов. Сила Кулона. Работа по перемещению заряда в электростатическом поле. Связь напряженности и потенциала электростатического поля. Силовые линии и эквипотенциальные поверхности. Поток вектора напряженности. Теорема Гаусса для вектора напряженности электростатического поля. Применение теоремы Гаусса для расчета напряженности: поле равномерно заряженного шара, провода (нити), плоскости. Теорема Гаусса для электростатического поля в дифференциальной форме. Теорема о циркуляции вектора напряженности электростатического поля. Электрический диполь. Энергия диполя в электрическом поле, действующая на него сила и момент сил.
9	Проводник в электростатическом поле. Поверхностные заряды. Поле вблизи поверхности заряженного проводника. Явление электрической индукции. Экранировка поля проводящим слоем. Электростатическая защита. Электрическая ёмкость проводника. Конденсаторы и ёмкость конденсаторов. Энергия взаимодействия системы электрических зарядов. Энергия заряженного конденсатора.

No	
п/п	Темы лекционных занятий
10	Электрическое поле в диэлектрических средах. Причины поляризации диэлектриков. Вектор поляризованности. Объемные и поверхностные связанные заряды. Диэлектрическая проницаемость среды и вектор электрической индукции. Теорема Гаусса для векторов поляризованности и электрической индукции. Поле на границе диэлектрика. Граничные условия для векторов напряженности и электрической индукции. Плотность энергии электростатического поля в диэлектрике. Сегнетоэлектрические явления и их использование в технике.
11	Стационарный электрический ток. Сила тока и плотность тока. Уравнение непрерывности электрического заряда и условие стационарности тока. Электрическое поле в проводнике с током и закон Ома в локальной форме. Причина затухания тока. Электрическое сопротивление проводника. Законы Ома и Джоуля-Ленца. Условие квазистационарности тока. Причины появления электродвижущей силы. Источники ЭДС. Закон Ома для неоднородного участка цепи. Разветвленные электрические цепи. Правила Кирхгофа и их применение.
12	Постоянное магнитное поле в вакууме. Причина появления магнитного поля. Вектор индукции магнитного поля. Сила Лоренца. Магнитное поле движущегося электрического заряда и элемента тока. Закон Био-Савара-Лапласа. Сила Ампера. Теорема Гаусса для индукции магнитного поля. Теорема о циркуляции вектора индукции магнитного поля. Применение теоремы о циркуляции к расчету магнитного поля: поле цилиндрического провода с током, поверхностного тока, соленоидальной и тороидальной катушки с током. Теорема о циркуляции вектора индукции в дифференциальной форме. Сравнение особенностей электростатического и магнитостатического полей. Движение заряженной частицы в постоянных магнитном и электрическом полях. Дипольный магнитный момент контура с током. Энергия замкнутого проводника с постоянным током во внешнем магнитном поле. Сила и момент силы, действующие на контур с током.
13	Магнитное поле в веществе. Намагничение среды и вектор намагниченности. Магнитная проницаемость среды и вектор напряженности магнитного поля. Теорема о циркуляции вектора напряженности и вектора намагниченности. Магнитное поле в магнетиках. Поле постоянного магнита. Поле на границе магнетика. Граничные условия для векторов напряженности и индукции магнитного поля. Причины появления диа-, пара- и ферромагнетизма. Явление гистерезиса.
14	Явление электромагнитной индукции. Природа ЭДС электромагнитной индукции в проводниках, движущихся в магнитном поле. Принцип действия электромотора и генератора электрического тока. Вихревое электрическое поле и причина его появления. Закон Фарадея и правило Ленца. Проводник и постоянный магнит в переменном магнитном поле. Индукционные токи (токи Фуко). Коэффициент индуктивности. Индуктивность соленоида. Плотность энергии магнитного поля. Явление самоиндукции и ЭДС самоиндукции. Явление взаимной индукции. Коэффициенты взаимной индуктивности и принцип действия трансформатора.
15	Электрические колебания. Электрический колебательный контур. Собственные электрические колебания в контурах (незатухающие и затухающие), их характеристики. Вынужденные электрические колебания. Резонанс напряжения на конденсаторе и тока в контуре. Добротность контура. Полное сопротивление (импеданс) контура. Эффективные ток и напряжение. Принцип приема электромагнитного сигнала.

No	
п/п	Темы лекционных занятий
16	Электромагнитное поле. Ток смещения. Система уравнений Максвелла. Поток плот-
	ности энергии электромагнитного поля. Вектор Пойнтинга и теорема Пойнтинга.
	Волновое уравнение для электромагнитного поля в идеальном диэлектрике (вакууме).
	Электромагнитные волны. Волновой вектор. Скорость электромагнитных волн. Связь
	напряженности электрического и магнитного поля в электромагнитной волне. Шкала
	электромагнитных волн. Энергия и импульс электромагнитной волны. Излучение
	электромагнитных волн ускоренными зарядами. Волновая зона. Диаграмма направ-
	ленности электромагнитного излучения. Рассеяние электромагнитного излучения. 4 семестр
17	Волновые процессы в оптике. Суперпозиция электромагнитных волн. Условие коге-
1 /	рентности и возникновение интерференции. Оптическая разность хода. Условия мак-
	симума и минимума при интерференции. Условия пространственной и временной ко-
	герентности. Интерференционная схема Юнга. Интерференция в тонких пленках.
	Принцип Гюйгенса-Френеля. Дифракция света на узкой щели и круглом препятствии.
	Условие дифракционного минимума. Многолучевая интерференция. Дифракционная
	решетка и принцип спектрометрии. Критерий Рэлея. Разрешающая способность ди-
	фракционной решетки. Поляризация электромагнитных волн. Поляризаторы и закон
	Малюса. Двойное лучепреломление и его использование в технике. Оптически актив-
	ные среды. Явление дисперсии электромагнитных волн.
18	Тепловое излучение. Энергетическая светимость, излучательная и поглощательная
	способность. Закон Стефана-Больцмана и закон смещения Вина для теплового излу-
	чения абсолютно черного тела. Коэффициент поглощения. Неприменимость законов
	классической физики. Гипотеза Планка.
19	Основы квантовой теории микрочастиц. Фотон. Энергия и импульс фотона. Внешний
	и внутренний фотоэффект. Уравнение Эйнштейна для фотоэффекта. Работа выхода
	электрона из металла и красная граница фотоэффекта. Эффект Комптона. Гипотеза де
	Бройля. Волна де Бройля. Опыты по дифракции микрочастиц. Корпускулярно-
20	волновой дуализм.
20	Основы квантовой теории атома. Постулат Бора. Боровские электронные орбиты в
	одноэлектронном атоме. Спектр энергии одноэлектронного атома. Излучение одноэлектронного атома. Спектральные серии. Орбитальный момент импульса и орби-
	тальный магнитный момент электрона в атоме. Орбитальное и магнитное квантовые
	числа. Опыты Штерна-Герлаха. Собственный момент импульса и собственный маг-
	нитный момент электрона. Спиновое квантовое число. Система четырех квантовых
	чисел и принцип Паули. Заполнение электронами оболочек и подоболочек в атоме.
21	Основы квантовой теории микросистем. Опыт с прохождением микрочастицы через
	двухщелевую диафрагму. Волновая функция и её вероятностный смысл. Квантовый
	принцип суперпозиции. Принцип неопределенности Гейзенберга. Соотношения не-
	определенности и их смысл. Условия применимости классического и квантового опи-
	сания физических систем. Нестационарное и стационарное уравнение Шредингера.
	Рассеяние микрочастицы на прямоугольном потенциальном барьере. Туннельный
	эффект. Эмиссия электронов из металла. Микрочастица в одномерной потенциальной
	яме прямоугольной формы. Квантовый гармонический осциллятор. Тепловые коле-
	бания кристаллической решётки.
22	Электроны в кристаллических средах. Кулоновская и обменная энергия. Типы меж-
	атомных связей: ковалентная, металлическая, ионная. Образование энергетических
	зон. Проводники, полупроводники, диэлектрики. Распределение Ферми-Дирака и
	функция Ферми. Свойства электронного газа при нулевой температуре и температу-
	ре, отличной от нуля. Условия вырожденности и невырожденности электронного газа
	в кристаллических средах.

№ п/п	Темы лекционных занятий
23	Свойства полупроводников. Собственные полупроводники и их проводимость. При-
	месные полупроводники и их проводимость. р-п-переход и его вольт-амперная харак-
	теристика. Запирающий слой. Транзисторы и их использование. Свойства магнети-
	ков. Магнетизм как квантовое явление. Причины появления магнитного упорядоче-
	ния. Ферро- и антиферромагнетизм. Магнитный резонанс и его использование. Маг-
	нитострикционные и гальваномагнитные явления. Явление сверхпроводимости и
	причины его появления. Сверхпроводник в магнитном поле. Эффект Джозефсона в
	сверхпроводнике. СКВИД и его применение. Физика низкоразмерных систем. Гете-
	роструктуры и их применение в технике. Наноструктуры. Квантовые нити и точки.
	Использование в наноэлектронике. Квантовый принцип передачи информации.
24	Основы теории атомного ядра. Состав атомного ядра. Нуклоны. Массовое и зарядо-
	вое число. Изотопы. Деление ядер. α-, β- и γ-излучение. α- и β-распад ядер. Есте-
	ственная радиоактивность. Закон радиоактивного распада. Период полураспада.
	Энергия выхода ядерной реакции распада. Дефект масс. Удельная энергия связи нук-
	лонов в ядре. Устойчивость и неустойчивость ядер. Возможность термоядерного син-
	теза. Проблема нуклеосинтеза. Защита от ионизирующих излучений

4.3 Содержание практических (семинарских) занятий

Очная форма обучения

No	Темы практических (семинарских) занятий				
п/п	темы практических (семинарских) запятии				
2 семестр					
1	Кинематика поступательного и вращательного движения. Связь кинематических ха-				
	рактеристик при поступательного и вращательного движений.				
2	Уравнения динамики поступательного движения и вращательного движения вокруг				
	закрепленной оси. Момент импульса и момент силы.				
3	Законы сохранения и изменения импульса, момента импульса и механической энер-				
	гии.				
4	Механические колебания. Затухающие и незатухающие колебания физического и				
	пружинного маятников. Вынужденные колебания и резонанс.				
5	Методы решения термодинамических задач. Использование уравнения состояния си-				
	стемы, уравнений термодинамических процессов и первого начала термодинамики				
	при расчете процессов в идеальном газе. Вычисление теплоемкости термодинамиче-				
	ских процессов.				
6	Вычисление изменения энтропии термодинамической системы. Второе начало тер-				
	модинамики. Циклические процессы и вычисление к.п.д. тепловых машин. Цикл				
	Карно. Функция распределения Максвелла молекул газа по величинам скоростей и её				
	применение к расчету средних величин.				
7	Функция распределения Больцмана и барометрическая формула. Частота столкнове-				
	ния молекул газа со стенкой. Средняя длина свободного пробега молекул газа.				
	3 семестр				
8	Принцип суперпозиции и расчет электростатического поля для системы точечных за-				
	рядов и для заряда, распределенного непрерывно. Вычисление напряженности и по-				
	тенциала электростатического поля. Связь напряженности и потенциала. Работа по				
	перемещению заряда в электростатическом поле.				
9	Применение теоремы Гаусса для расчета электростатических полей. Энергия системы				
	заряженных частиц и электрического поля. Емкость и энергия заряженных конденса-				
	торов.				

№ п/п	Темы практических (семинарских) занятий
10	Законы постоянного тока. Правила Кирхгофа. Ток в неоднородных проводниках. Вы-
	числение электрического заряда, протекающего по цепи и выделяющегося в электри-
	ческой цепи джоулевого тепла. Закон Джоуля-Ленца.
11	Расчет магнитных полей с помощью закона Био-Савара и с помощью теоремы о цир-
	куляции.
12	Силы Лоренца и Ампера. Движение заряженной частицы в стационарных электриче-
	ском и магнитном полях. Силы, действующие на электрический и магнитный диполь
	(контур с током).
13	Явление электромагнитной индукции. Закон Фарадея. Явления самоиндукции и вза-
	имной индукции. Вычисление индуктивности. Энергия магнитного поля.
14	Собственные электрические колебания в цепях. Электрический колебательный кон-
	тур и его параметры. Вынужденные электрические колебания.

4.4 Содержание лабораторных работ Очная форма обучения

No	тал форма обутения
п/п	Наименования лабораторных работ
	2 семестр
1	Исследование косого удара о наклонную плоскость
2	Упругий удар шаров
3	Определение скорости пули с помощью баллистического маятника
4	Измерение скорости пули с помощью физического маятника
5	Определение силы трения скольжения
6	Изучение вращательного движения
7	Определение радиуса кривизны вогнутой поверхности методом катающегося шарика
8	Измерение скорости пули с помощью вращающейся платформы
9	Определение коэффициента трения качения для различных материалов
10	Определение моментов инерции методом колебаний
11	Определение момента инерции с методом крутильных колебаний
12	Определение ускорения свободного падения с помощью физического маятника
13	Изучение колебаний пружинного маятника
14	Определение показателя адиабаты методом Клемана и Дезорма
15	Определение коэффициента поверхностного натяжения воды методом отрыва кольца
16	Определение вязкости жидкости по методу Стокса
17	Определение длины свободного пробега и эффективного диаметра молекул воздуха
	3 семестр
18	Исследование электрического поля проводника с током
19	Измерение сопротивлений проводников мостовыми схемами
20	Релаксационные колебания
21	Определение удельного заряда электрона
22	Термоэлектрические явления
23	Определение горизонтальной составляющей магнитного поля земли
24	Исследование магнитного поля соленоида
25	Определение индуктивности тороида с ферритовым магнитопроводом
26	Исследование электрических затухающих колебаний
27	Определение основных характеристик колебательного контура методом резонанса
	4 семестр
28	Определение радиуса кривизны линзы с помощью колец Ньютона

No	Наименования лабораторных работ
п/п	
29	Определение длины световой волны при помощи дифракционной решётки
30	Определение точки Кюри
31	Исследование явления магнитного гистерезиса с помощью осциллографа
32	Исследование характеристик полупроводника с помощью эффекта Холла
33	Измерение высоких температур с помощью оптического пирометра
34	Проверка закона Малюса
35	Определение ширины запрещённой зоны полупроводника и температурного коэффи-
	циента сопротивления металла
36	Исследование туннельного эффекта с помощью полупроводникового туннельного
	диода
37	Определение ширины запирающего слоя р-п перехода и концентрации примеси в об-
	ласти лавинного пробоя
38	Снятие характеристик и определение параметров фотоэлемента
39	Изучение полупроводникового фотоэлемента
40	Определение потенциалов ионизации и возбуждения газа
41	Изучение спектра водорода и определение постоянной Ридберга

4.5 Содержание клинических практических занятий

Занятия указанного типа не предусмотрены основной профессиональной образовательной программой.

4.6 Содержание самостоятельной работы обучающегося

Очная форма обучения

о тал форма обутения							
№ п/п	Виды и формы самостоятельной работы						
2 семестр							
1	Подготовка к выполнению и сдаче лабораторных работ. Подготовка отчета по ре-						
	зультатам каждой лабораторной работы						
2	Подготовка к практическим (семинарским) занятиям						
3	Подготовка к промежуточной аттестации и ее прохождение						
	3 семестр						
4	Подготовка к выполнению и сдаче лабораторных работ. Подготовка отчета по ре-						
	зультатам каждой лабораторной работы						
5	Подготовка к практическим (семинарским) занятиям						
6	Подготовка к промежуточной аттестации и ее прохождение						
4 семестр							
7	Подготовка к выполнению и сдаче лабораторных работ. Подготовка отчета по						
	результатам каждой лабораторной работы						
8	Подготовка к промежуточной аттестации и ее прохождение						

5 Система формирования оценки результатов обучения по дисциплине (модулю) в рамках текущего контроля успеваемости и промежуточной аттестации обучающегося

Очная форма обучения

Mep	Максимальное количество баллов					
rı i	промсжуто	чной аттестации обучающегося 2 семестр	KUJIH ACCI BU UZJIJIUB			
		P				
	Первый рубежный контроль	Оцениваемая учебная деятельность обучающегося:				
		Выполнение и защита трёх лабораторных работ	12			
		Выполнение контрольной работы по физике на практических занятиях	8			
Тогалин		Выполнение контрольных тестовых заданий	10			
Текущий контроль		Итого	30			
успеваемости	Второй рубежный контроль	Оцениваемая учебная деятельность обучающегося:				
		Выполнение и защита трёх лабораторных работ	12			
		Выполнение контрольной работы по физике на практических занятиях	8			
		Выполнение контрольных тестовых заданий	10			
		Итого	30			
Промежуточ- ная аттестация	Экзамен		40 (100*)			
	l	3 семестр				
		Оцениваемая учебная деятельность обучающегося:				
	Первый рубежный контроль	Выполнение и защита трёх лабораторных работ	12			
		Выполнение контрольной работы по физике на практических занятиях	8			
Т		Выполнение контрольных тестовых заданий	10			
Текущий		Итого	30			
контроль успеваемости		Оцениваемая учебная деятельность обучающегося:				
	Второй	Выполнение и защита трёх лабораторных работ	12			
	рубежный контроль	Выполнение контрольной работы по физике на практических занятиях	8			
		Выполнение контрольных тестовых заданий	10			
		Итого	30			
Промежуточ- ная аттестация	Экзамен		40 (100*)			
		4 семестр				
	Оцениваемая учебная деятельность					
	Первый	обучающегося:	1.5			
Текущий контроль	1 0	Выполнение и защита трёх лабораторных работ	15			
успеваемости		Выполнение контрольных тестовых заданий	15			
j enegacinoeth	Второй рубежный	Итого Оцениваемая учебная деятельность обучающегося:	30			
	руссжный	обу чающи осл.				

Mep	Максимальное		
И	количество баллов		
	контроль	Выполнение и защита трёх лабораторных	15
		работ	
		Выполнение контрольных тестовых заданий	15
		Итого	30
Промежуточ-	Дифферені	цированный зачет	40 (100*)
ная аттестация			

^{*} В случае отказа обучающегося от результатов текущего контроля успеваемости обучающегося от результатов текущего контроля успеваемости

Шкала соответствия оценок в стобалльной и академической системах оценивания результатов обучения по дисциплине (модулю)

Система оценивания результатов обучения	Оценки			
Стобалльная система оценивания	0 - 39	40 - 60	61 - 80	81 – 100
Академическая система оценивания (экзамен, дифференцированный зачет, защита курсового проекта, защита курсовой работы)	Неудовле- творительно	Удовлетво- рительно	Хорошо	Отлично
Академическая система оценивания (зачет)	Не зачтено		Зачтено	

6 Описание материально-технической базы (включая оборудование и технические средства обучения), необходимой для осуществления образовательного процесса по дисциплине (модулю)

Для осуществления образовательного процесса по дисциплине (модулю) требуется:

- учебная аудитория, оснащенная доской для написания мелом (для проведения лекционных и практических занятий);
- учебная лаборатория, оснащенная лабораторными установками не менее 7-8 разных типов в общем количестве не менее 30 рабочих мест, а также необходимыми для проведения физического эксперимента измерительными приборами (для проведения лабораторных работ).

7 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

7.1 Основная литература

- 1. Савельев, И.В. Курс физики: в 3 т. Т.1. Механика. Молекулярная физика: учебное пособие / И.В.Савельев 7-е изд., стер. Санкт-Петербург: Лань, 2018.— 356 с. (Допущено Научно-методическим советом по физике Министерства образования и науки Российской Федерации для студентов высших учебных заведений, обучающихся по техническим и технологическим направлениям и специальностям). ISBN 978-5-8114-0685-2 (Том 1). URL https://e.lanbook.com/book/106894. Режим доступа: Электроннобиблиотечная система Лань. Текст: электронный.
- 2. Савельев, И.В. Курс физики : в 3 т. Т.2. Электричество. Колебания и волны. Волновая оптика : учебное пособие / И.В.Савельев 6-е изд., стер. Санкт-Петербург:

- Лань, 2019.— 468 с. (Допущено Научно-методическим советом по физике Министерства образования и науки Российской Федерации для студентов высших учебных заведений, обучающихся по техническим и технологическим направлениям и специальностям). ISBN 978-5-8114-4253-9 (Том 2). URL https://e.lanbook.com/book/117715. Режим доступа: Электронно-библиотечная система Лань. Текст: электронный.
- 3. Савельев, И.В. Курс физики : в 3 т. Т.З. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц : учебное пособие / И.В.Савельев 7-е изд., стер. Санкт-Петербург: Лань, 2019.— 308 с. (Допущено Научно-методическим советом по физике Министерства образования и науки Российской Федерации для студентов высших учебных заведений, обучающихся по техническим и технологическим направлениям и специальностям). ISBN 978-5-8114-4254-6 (Том 3). URL https://e.lanbook.com/book/117716. Режим доступа: Электронно-библиотечная система Лань. Текст : электронный.

7.2 Дополнительная литература

- 4. Чертов А.Г., Воробьев А.А., под ред. Общая физика: учебное пособие / Электрон. дан. Москва: КноРус, 2020. 800 с. ISBN 978-5-406-05760-5. URL https://www.book.ru/book/933946. Режим доступа: book.ru. Internet access. Текст: электронный.
- 5. Колмаков, Ю.Н. Механика и теория относительности : лекции по физике : учебное пособие / Ю.Н.Колмаков, Ю.А.Пекар, И.М.Лагун, Л.С.Лежнева.— Тула : Изд-во ТулГУ, 2010.— 180 с. ISBN 978-5-7679-0213-5. URL https://tsutula.bookonlime.ru/viewer/11510 .— Режим доступа: Электронно-библиотечная система BookOnLime. Текст : электронный.
- 6. Колмаков, Ю.Н. Термодинамика и молекулярная физика: лекции по физике : учебное пособие / Ю.Н.Колмаков, Ю.А.Пекар, Л.С.Лежнева.— Тула : Изд-во ТулГУ, 2008.— 139 с. ISBN 978-5-7679-1221-6. URL https://tsutula.bookonlime.ru/viewer/11460.— Режим доступа: Электронно-библиотечная система BookOnLime. Текст : электронный.
- 7. Колмаков, Ю.Н. Электричество и магнетизм : лекции по физике : учебное пособие / Ю.Н.Колмаков, Ю.А.Пекар, И.М.Лагун.— Тула : Изд-во ТулГУ, 2008.— 140 с. ISBN 978-5-7679-0186-4. URL https://tsutula.bookonlime.ru/viewer/11572.— Режим доступа: Электронно-библиотечная система BookOnLime. Текст : электронный.
- 8. Колмаков, Ю.Н. Электромагнетизм и оптика: лекции по физике: учебное пособие / Ю.Н.Колмаков, Ю.А.Пекар, Л.С.Лежнева.— Тула: Изд-во ТулГУ, 2010.— 130 с. ISBN 978-5-7679-0187-2. URL https://tsutula.bookonlime.ru/viewer/11508.— Режим доступа: Электронно-библиотечная система BookOnLime. Текст: электронный.
- 9. Колмаков, Ю.Н. Основы квантовой теории и атомной физики : учебное пособие / Ю.Н.Колмаков, Ю.А.Пекар, , Л.С.Лежнева, В.А.Семин.— Тула : Изд-во ТулГУ, 2010.— 148 с. ISBN 978-5-7679-0352-2. URL https://tsutula.bookonlime.ru/viewer/11514.— Режим доступа: Электронно-библиотечная система BookOnLime. Текст : электронный.
- 10. Колмаков, Ю.Н. Основы физики конденсированных сред и физики микромира: Ч.1 : учебное пособие / Ю.Н.Колмаков, Д.М.Левин, В.А.Семин.— Тула : Изд-во ТулГУ, 2014.— 185 с. ISBN 978–5–7679–2655–8. URL https://tsutula.bookonlime.ru/viewer/11494.— Режим доступа: Электронно-библиотечная система BookOnLime. Текст : электронный.
- 11. Колмаков, Ю.Н. Основы физики конденсированных сред и физики микромира: Ч.2 : учебное пособие / Ю.Н.Колмаков, Д.М.Левин, В.А.Семин.— Тула : Изд-во ТулГУ, 2014.— 150 с. ISBN 978–5–7679–2661–9. URL https://tsutula.bookonlime.ru/viewer/11598.— Режим доступа: Электронно-библиотечная система BookOnLime. Текст : электронный.

8 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. https://tsutula.bookonlime.ru/ Электронно-библиотечная система ТулГУ (учебники авторов ТулГУ) по паролю.
- 2. http://www.iprbookshop.ru/ ЭБС IPRBooks (включает базовую коллекцию учебных пособий по физике).
- 3. <u>https://e.lanbook.com/books/918#fizika_0_header</u> ЭБС издательства Лань (доступ к научно-образовательному ресурсу по физике).
- 4. https://urait.ru/ ЭБС издательства Юрайт (доступ к научно-образовательному ресурсу, включая издания по физике).
- 5. http://sfiz.ru/ Вся физика. Научно-образовательный проект.
- 6. https://online.mephi.ru/local/staticpage/view.php?page=open-courses-physic&ysclid=lhyhw41n3d231703943 Образовательный портал по физике (МИФИ).
- 7. https://newlms.magtu.ru/course/index.php?categoryid=9869&ysclid=lhyhyks49q361342046
- Образовательный портал по физике (МГТУ).
- 8. http://www.phys.msu.ru/ сайт физфака МГУ.
- 9. https://www.ufn.ru/ сайт журнала "Успехи физических наук".
- 10. <u>https://ar.oversea.cnki.net</u> англоязычная база данных на платформе проекта Китайская национальная инфраструктура знаний.
- 9 Перечень информационных технологий, необходимых для осуществления образовательного процесса по дисциплине (модулю)
- 9.1 Перечень необходимого ежегодно обновляемого лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства

Пакет офисных приложений "МойОфис".

9.2 Перечень необходимых современных профессиональных баз данных и информационных справочных систем

Компьютерная справочная правовая система Консультант Плюс.